
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 08 – Lists

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered

• Constants

• More on while loops

– Sentinel loops

• Priming Reads

–Boolean flags

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives

• To learn about lists and what they are used for

– To be able to create and update lists

– To learn different ways to mutate a list

– To understand the syntax of lists

• To be able to use the membership “in” operator

• To understand how functions and methods differ

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Reminder About Loop Evaluations

• The conditional in a while loop is not
checked until the body of the loop has finished

• How many times will this code print “Hello”?
count = 0

while count < 4:

count += 1

print("Hello")

– “Hello” will be printed out four times

5

The loop does NOT stop
as soon as count’s value

is changed to 4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted6

Introduction to Lists

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Exercise: Average Three Numbers

• Read in three numbers and average them
num1 = int(input("Please enter a number: "))

num2 = int(input("Please enter a number: "))

num3 = int(input("Please enter a number: "))

avg = (num1 + num2 + num3) / 3

print(avg)

• Easy! But what if we want to do 100 numbers?
Or 1000 numbers?

• Do we want to make 1000 variables?

7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Using Lists

• We need an easy way to hold individual data
items without needing to make lots of variables

– Making num1, num2, ..., num99, num100

is time-consuming and impractical

• Instead, we can use a list to hold our data

–A list is a data structure: something that
holds multiple pieces of data in one structure

8

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Lists vs Individual Variables

• Individual variables are like sticky notes

– Works best when you only need a few

– Good for storing different “pieces” of info

• Lists are like a checklist written
on a single piece of paper

– Best for storing a lot of related
information in one place

9

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Properties of a List

• Heterogeneous (multiple data types!)

• Contiguous (all together in memory)

• Ordered (remain in the order they were set in)

• Have instant (“random”) access to any element

• Are “mutable sequences of arbitrary objects”

10

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted11

Creating and Modifying Lists

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Creating an Empty List

• To create an empty list, use square brackets:
newList = []

– This creates a list variable called newList,
with no elements in the list

– (Sort of like a new checklist on a blank page)

• Similar to how we create an empty string:

newString = ""

12

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

List Method: append()

• The append() method lets us add items
to the end of a list, increasing its size

• Syntax:
listName.append(itemToAppend)

• Useful for creating a list from flexible input

–Can start with an empty list, and add
items as the user requests them

13

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example of append()

• We can use append() to create a list of
numbers (using a loop to control how many)

values = [] # initialize the list to be empty

count = 0 # count how many numbers added

while count < 4:

userVal = int(input("Enter a number: "))

add value to the list

values.append(userVal)

count += 1

14

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• Here’s a demonstration
of what the code is doing

bash-4.1$ python numberList.py

Enter a number: 17

Enter a number: 22

Enter a number: 5

Enter a number: -6

15

values = [] # initialize empty list

count = 0

while count < 4:

userVal = int(input("Enter a number: "))

values.append(userVal)

count += 1

17 22 5 -6

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

List Method: remove()

• The remove() method lets us remove an
item from the list – specifically, it finds and
removes the first instance of a given value
listName.remove(valueToRemove)

• Useful for deleting things we don’t need

– (We won’t use it very much in CMSC 201 though)

16

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Ahmed", "Alice", "Andy"]

17

Adam Ahmed Alice Andyroster =

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Ahmed", "Alice", "Andy"]

roster.remove("Adam") # Adam has dropped the class

18

Adam Ahmed Alice Andyroster =

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example of remove()

• We can use remove() to remove students
who have dropped the class from the roster

roster = ["Adam", "Ahmed", "Alice", "Andy"]

roster.remove("Adam") # Adam has dropped the class

roster.remove("Bob") # Bob is not in the roster

19

roster = Ahmed Alice Andy

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Quick Note – Methods vs Functions

• Functions include things like

– print()

– input()

– int()

• Methods are a bit different, and include
– .append()

– .remove()

20

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Quick Note – Methods vs Functions

• All you need to know for now is the difference
between how they look when written out

21

print("dogs!") names.append("Ed")

Functions perform the
action on the object

inside the parentheses

Methods perform the
action on the object

before the period

This function
prints out “dogs!”

This method appends to names
(In this example, it appends “Ed”)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted22

Editing List Contents

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Mutating Lists

• Remember that lists are defined as
“mutable sequences of arbitrary objects”

– “Mutable” means we can change them

• So far, the only thing we’ve learned has been
how to add or remove items from the list

–But we can also edit the contents of a list
“in place,” without having to add or remove

23

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Using Lists: Individual Variables

• First, we need an easy way to refer to each
individual variable in our list

• What are some possibilities?

– Math uses subscripts (x1, x2, x3, etc.)

– Instructions use numbers (“Step 1: Combine…”)

• Programming languages use a different syntax

– x[1], x[0], instructions[1], point[i]

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Accessing Individual Elements

• Access the individual elements in a list
is called indexing into the list

• Note: List don’t start counting from 1

– They start counting from 0!

25

0 1 2 3 4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Square Bracket Syntaxes

• Can use [] to assign initial values

myList = [1, 3, 5]

words = ["Hello", "to", "you"]

– (Also called initialization)

• And to refer to individual elements of a list
>>> print(words[0])

Hello

>>> myList[0] = 4

26

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Length of a List

• To get a list’s length, use the function len()

>>> dogs = ["Lacey", "Kieran", "Al"]

>>> len(dogs)

3

>>> len([2, 0, 1, 8])

4

• Why would we need the length of a list?

– We’ll see in the next few slides!
27

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

List Example: Grocery List

• You are getting ready to head to the grocery
store to get some much needed food

• In order to organize your
trip and to reduce the
number of impulse buys,
you decide to make a
grocery list

28

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

List Example: Grocery List

• Inputs:

–3 items for grocery list

• Process:

– Store groceries using list data structure

• Output:

– Final grocery list

29

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Grocery List Code
NUM_GROC = 3

def main():

print("Welcome to the Grocery Manager 1.0")

groceryList = [] # initialize empty list

get grocery items from the user

count = 0

while count < NUM_GROC:

item = input("Please enter an item: ")

groceryList.append(item)

count += 1

print(groceryList)

main()

30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Grocery List Code
MAX_GROC = 3

def main():

print("Welcome to the Grocery Manager 1.0")

groceryList = [] # initialize empty list

get grocery items from the user

count = 0

while count < MAX_GROC:

item = input("Please enter an item: ")

groceryList.append(item)

count += 1

print(groceryList)

main()

31

Is there a way to do this
without using count? How
else could we keep track of

how long the list is?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Grocery List Code
MAX_GROC = 3

def main():

print("Welcome to the Grocery Manager 1.0")

groceryList = [] # initialize list

get grocery items from the user

while len(groceryList) < MAX_GROC:

item = input("Please enter an item: ")

groceryList.append(item)

print(groceryList)

main()

32

This works just as
well as count, but
we don’t need to
keep track of any
extra variables!

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Iterating Over a List

• Now that we have our grocery list, how
do we iterate over each element of the
list and print out its contents?

– Hint: Use a while loop and the len() function!

index = 0

while index < len(groceryList):

print(???)

index += 1

33

groceryList[index]

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted34

Membership “in” Operator

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Types of Operators in Python

• Arithmetic Operators

• Assignment Operators

• Comparison Operators

• Logical Operators

• Membership Operators

• Bitwise Operators

• Identity Operators

35

what we’re
covering now

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Membership Operator Example

• What do you think this code does?
hounds = ["Ibizan", "Afghan", "Serbian", "Bassett"]

guess = input("Please enter a dog: ")

while guess not in hounds:

print("You guessed wrong!")

guess = input("Guess again: ")

• Runs until the user guesses a dog in the list

– The membership operator can be very useful

36

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Membership “in” Operator

• Syntax:
element in sequence

• Checks to see if element exists in sequence

– Evaluates to either True or False

– Can use it any time you have a conditional

• Can also use not in to test for absence

37

element
to look for

“in” keyword may be a list
or a string

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Time for…

38

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Livecoding: Updated Grocery List

• Let’s update our grocery list program to allow
as many items as the user wants, using a
while loop and a sentinel value of “STOP”

– Print out the grocery list (item by item) at the end

• You will need to use:

– At least one while loop (a sentinel loop)

– Conditionals

– A single list
39

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• Meta

– (Remember, either hold down Alt, or hit Esc)

• Meta + <

– (Meta + Shift + ,)

– Moves cursor to the very front/top of the file

• Meta + >

– (Meta + Shift + .)

– Moves cursor to the very end/bottom of the file
40

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements

• HW 3 is out on Blackboard now

– Due by Friday (September 28th) at 8:59:59 PM

• Next week’s lab will be online

• Midterm October 3rd/4th

– Review Worksheet out now on course website

– Out-of-class reviews will happen early next week

41

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources

• Grocery bag (adapted from):
– https://www.flickr.com/photos/77106971@N00/1420127033

• Sticky note:
– https://www.flickr.com/photos/winning-information/2325865367

• Checklist:
– https://pixabay.com/p-1316848/

42

